Cukedoctor Documentation

Version 3.9.1-SNAPSHOT

Table of Contents

1. Introduction

2. Features

2.1. Cukedoctor Converter
2.1.1. Convert features test output into documentation
2.2. Ordering
2.2.1. Default ordering
2.2.2. Custom ordering with tags
2.3. Enrich features
2.3.1. DocString enrichment activated by the content type
2.3.2. DocString enrichment activated by a feature tag
2.3.3. DocString enrichment activated by a scenario tag
2.3.4. Whitespace in descriptions
2.4. Documentation introduction chapter
2.4.1. Introduction chapter in classpath
2.5. Tag rendering
2.5.1. Render feature tags in that feature’s scenarios
2.5.2. Ignore cukedoctor tags in resulting documentation
2.6. Attachments
2.6.1. Logging a string in Cucumber-JVM 6.7.0

2.6.2. Attaching plain text as a string with name in Cucumber-JVM 6.7.0
2.6.3. Attaching plain text as a byte array with name in Cucumber-JVM 6.7.0

2.6.4. Attaching a string Cucumber]S 6.0.5

2.6.5. Attaching a plain text string Cucumber]S 6.0.5
2.6.6. Attaching a plain text buffer Cucumber]JS 6.0.5
2.6.7. Logged text should appear before attachments
2.6.8. Multiple attachments

2.6.9. Do not render attachments that are not plain text

© © q3 U s D DD DN

W W W W W DN DN DN NN DN DNDNDN P =R= ==
W N RO O 00N 0 NN OO U W

Chapter 1. Introduction

Cukedoctor is a Living documentation tool which integrates Cucumber and Asciidoctor in order to
convert your BDD tests results into an awesome documentation.

Here are some design principles:

* Living documentation should be readable and highlight your software features;
- Most bdd tools generate reports and not a truly documentation.

* Cukedoctor do not introduce a new API that you need to learn, instead it operates on top of
cucumber json output files;

- In the 'worst case' to enhance your documentation you will need to know a bit of asciidoc

markup.

In the subsequent chapters you will see a documentation which is generated by the output of
Cukedoctor’s BDD tests, a real bdd living documentation.

http://www.relishapp.com/cucumber/cucumber/docs/formatters/json-output-formatter
http://asciidoctor.org/docs/what-is-asciidoc/
http://asciidoctor.org/docs/what-is-asciidoc/
https://github.com/rmpestano/cukedoctor/tree/master/cukedoctor-converter/src/test/java/com/github/cukedoctor/bdd/cukedoctor

Chapter 2. Features

2.1. Cukedoctor Converter

In order to have awesome living documentation

As a bdd developer

I want to use Cukedoctor to convert my cucumber test results into
readable living documentation.

2.1.1. Convert features test output into documentation

Given

The following two features: ¢

Feature: Featurel
Scenario: Scenario feature 1
Given scenario step
Feature: Feature?
Scenario: Scenario feature 2

Given scenario step

When

I convert their json test output using cukedoctor converter ¢

To generate cucumber .json output files just execute your BDD tests
with json formatter, example:

(Cucumber.class)
o (plugin = {"json:target/cucumber.json"})

o plugin option replaced format option which was
deprecated in newer cucumber versions.

Then

I should have awesome living documentation

Documentation

Summary
Scenarios Steps Features: 2
Passed Failed Total Passed Failed Skippe Pendin Undefi Missin Total Durati Status
d g ned g on
Featurel
1 0 1 1 0 0 0 0 0 1 647ms passed
Feature2
1 0 1 1 0 0 0 0 0 1 000ms passed
Totals
2 0 2 2 0 0 0 0 0 2 647ms
Features
Featurel

Scenario: Scenario feature 1

Given

scenario step i (647ms)

Feature2

Scenario: Scenario feature 2

Given

scenario step £ (000ms)

2.2. Ordering

In order to have features ordered in living documentation
As a bdd developer
I want to control the order of features in my documentation

2.2.1. Default ordering

Given

The following two features: ¢

Feature: Featurel
Scenario: Scenario feature 1
Given scenario step
Feature: Feature?
Scenario: Scenario feature 2

Given scenario step

When
I convert them using default order ¢

Then
Features should be ordered by name in resulting documentation ¢

Features

Featurel

Scenario: Scenario feature 1

Given

scenario step £y (647ms)

Feature2

Scenario: Scenario feature 2

Given

scenario step €3 (000ms)

2.2.2. Custom ordering with tags

0 Ordering is done using feature tag @order-

Given

The following two features: ¢

@order-2
Feature: Featurel

Scenario: Scenario feature 1
Given scenario step

@order-1
Feature: Feature?

Scenario: Scenario feature 2

Given scenario step

When

I convert them using tag order

Then

Features should be ordered respecting order tag

Features
Feature2
Scenario: Scenario feature 2

Given

scenario step £ (000ms)

Featurel

Scenario: Scenario feature 1

Given

scenario step £ (001ms)

2.3. Enrich features

In order to have awesome living documentation
As a bdd developer
I want to render asciidoc markup inside my features.

Asciidoc markup can be used in feature DocStrings. To do so you can enable it by using
@asciidoc tag at feature or scenario level.

Adding @asciidoc tag at feature level will make cukedoctor interpret all
features docstrings as Asciidoc markup.

Adding @asciidoc at scenario level will make cukedoctor interpret all
o steps docstrings as asciidoc markup.

(r') To enable asciidoc markup in a single step you can use
- asciidoc as docstring content type.

0 Feature and scenario descriptions are automatically interpreted as Asciidoc
markup without the need for adding the feature tag.

2.3.1. DocString enrichment activated by the content type

Asciidoc markup can be used in feature DocStrings. To do so you can enable it by using the content
type [asciidoc] in the DocString.

https://asciidoctor.org/docs/what-is-asciidoc/
https://relishapp.com/cucumber/cucumber/docs/gherkin/doc-strings#docstring-with-interesting-content-type

10

Given
The following two features: ¢
Feature: Discrete class feature
Scenario: Render source code
Given the following source code in docstrings

asciidoc
[source, java]

public int sum(int x, int y){
int result = x + vy;
return result; (1)

<1> We can have callouts in living documentation

Scenario: Render table

Given the following table
asciidoc

| Cell in column 1, row 1 | Cell in column 2, row 1
| Cell in column 1, row 2 | Cell in column 2, row 2
| Cell in column 1, row 3 | Cell in column 2, row 3

When

I convert enriched docstring with asciidoc content type using cukedoctor converter ¢

Then

DocString asciidoc output must be rendered in my documentation

Features

Discrete class feature

Scenario: Render source code

Given

the following source code in docstrings ¢ (002ms)

public int sum(int x, int y){
int result = x +vy;
return result; (1)

(@ We can have callouts in living documentation

Scenario: Render table

Given

the following table ¥y (000ms)

Cell in column 1, row 1 Cell in column 2, row 1
Cell in column 1, row 2 Cell in column 2, row 2
Cell in column 1, row 3 Cell in column 2, row 3

2.3.2. DocString enrichment activated by a feature tag

Asciidoc markup can be used in feature DocStrings. You can enable this by applying the tag
[@asciidoc] to the feature. Note this enables the enrichment for all DocStrings within the feature.

11

12

Given

The following two features: ¢

@asciidoc
Feature: Discrete class feature

Scenario: Render source code

Given the following source code in docstrings

[source, java]

public int sum(int x, int y){
int result = x +vy;
return result; (1)

<1> We can have callouts in living documentation

Scenario: Render table

Given the following table

| Cell in column 1, row 1 | Cell in column 2, row 1
| Cell in column 1, row 2 | Cell in column 2, row 2
| Cell in column 1, row 3 | Cell in column 2, row 3

When

I convert enriched docstring with asciidoc feature tag using cukedoctor converter ¢

Then

DocString asciidoc output must be rendered in my documentation ¢y

Features

Discrete class feature

Scenario: Render source code

Given

the following source code in docstrings ¢ (011ms)

public int sum(int x, int y){
int result = x +vy;
return result; (1)

(@ We can have callouts in living documentation

Scenario: Render table

Given

the following table ¥y (000ms)

Cell in column 1, row 1 Cell in column 2, row 1
Cell in column 1, row 2 Cell in column 2, row 2
Cell in column 1, row 3 Cell in column 2, row 3

2.3.3. DocString enrichment activated by a scenario tag

Asciidoc markup can be used in feature DocStrings. You can enable this by applying the tag
[@asciidoc] to the scenario. Note this enables the enrichment for all DocStrings within the scenario.

13

14

Given

The following two features: ¢

Feature: Discrete class feature

@asciidoc
Scenario: Render source code

Given the following source code in docstrings

[source, java]

public int sum(int x, int y){
int result = x +vy;
return result; (1)

<1> We can have callouts in living documentation

@asciidoc
Scenario: Render table

Given the following table

| Cell in column 1, row 1 | Cell in column 2, row 1
| Cell in column 1, row 2 | Cell in column 2, row 2
| Cell in column 1, row 3 | Cell in column 2, row 3

When

I convert enriched docstring with asciidoc scenario tag using cukedoctor converter ¢

Then

DocString asciidoc output must be rendered in my documentation

Features

Discrete class feature

Scenario: Render source code

Given

the following source code in docstrings ¢ (002ms)

public int sum(int x, int y){
int result = x +vy;
return result; (1)

(@ We can have callouts in living documentation

Scenario: Render table

Given
the following table ¥y (000ms)

Cell in column 1, row 1 Cell in column 2, row 1
Cell in column 1, row 2 Cell in column 2, row 2
Cell in column 1, row 3 Cell in column 2, row 3

2.3.4. Whitespace in descriptions

Features and Scenarios can have multi-line descriptions. In a feature file, these may be indented.
Cukedoctor uses the indentation of the first line non-blank line of the description to determine the

difference
between the indentation of the description in a feature file and your desired indentation within the

the
description itself.

15

16

Given
the feature: %

Feature: Feature One

This is the description for Feature One. The first non-blank line of this
description in the feature file began with four whitespace characters.
Therefore, cukedoctor will ignore up to the first four
whitespace characters
in all other lines in the same description,
if any are present.

This includes
further lines
in a different
paragraph
in the same description.

Scenario: Scenario One

This is the description for Scenario One. The first non-blank line of this
description in the feature file began with four whitespace characters.
Therefore, cukedoctor will ignore up to the first four
whitespace characters
in all other lines in the same description,
if any are present.

This includes
further lines
in a different
paragraph
in the same description.

Scenario: Scenario Two
This scenario has no indentation. You don't have to use 1it, after all.
Indentation in subsequent lines is therefore fully preserved.

When

I convert it &y

Then

it should be rendered in AsciiDoc as ¢}

17

18

Features

Feature One

This is the description for Feature One. The first non-blank line of this description
in the feature file began with four whitespace characters.

Therefore, cukedoctor will ignore up to the first four

whitespace characters

in all other lines in the same description,
if any are present.

This includes

further lines

in a different

paragraph

in the same description.

Scenario: Scenario One

This is the description for Scenario One. The first non-blank line of this description in the
feature file began with four whitespace characters.

Therefore, cukedoctor will ignore up to the first four

whitespace characters

in all other lines in the same description,
if any are present.

This includes

further lines

in a different

paragraph

in the same description.

Scenario: Scenario Two

This scenario has no indentation. You don’t have to use it, after all.

Indentation in subsequent lines is therefore fully preserved.

2.4. Documentation introduction chapter

In order to have an introduction chapter in my documentation

As a bdd developer

I want to be able to provide an asciidoc based document which
introduces my software.

2.4.1. Introduction chapter in classpath

o The introduction file must be named intro-chapter.adoc and can be in any
package of your application,

By default Cukedoctor will look into application folders but you can make
O Cukedoctor look into external folder by setting the following system property:
3
w

System.setProperty("INTRO_CHAPTER_DIR","/home/some/external/folder");

19

Given
The following two features: ¢
Feature: Featurel
Scenario: Scenario feature 1
Given scenario step
Feature: Feature2
Scenario: Scenario feature 2
Given scenario step

And
The following asciidoc document is on your application classpath 3

Introduction

Cukedoctor is a Living documentation tool which integrates Cucumber and Asciidoctor
in order to convert your BDD tests results into an awesome documentation.

Here are some design principles:

 Living documentation should be readable and highlight your software features;
» Most bdd tools generate reports and not a truly documentation.

* Cukedoctor do not introduce a new API that you need to learn, instead it operates on
top of cucumber json output files;

* In the 'worst case' to enhance your documentation you will need to know a bit of
asciidoc markup.

When
Bdd tests results are converted into documentation by Cukedoctor &

Then
Resulting documentation should have the provided introduction chapter ¢

20

http://www.relishapp.com/cucumber/cucumber/docs/formatters/json-output-formatter
http://asciidoctor.org/docs/what-is-asciidoc/

Documentation

Introduction

Cukedoctor is a Living documentation tool which integrates Cucumber and Asciidoctor
in order to convert your BDD tests results into an awesome documentation.

Here are some design principles:

 Living documentation should be readable and highlight your software features;
» Most bdd tools generate reports and not a truly documentation.

* Cukedoctor do not introduce a new API that you need to learn, instead it operates on
top of cucumber json output files;

* In the 'worst case' to enhance your documentation you will need to know a bit of
asciidoc markup.

Summary

Scenarios Steps Features: 2

Passe Faile Total Passe Faile Skipp Pendi Undef Missi Total Durat Status

d d d d ed ng ined ng ion
Featurel
1 0 1 1 0 0 0 0 0 1 647m passe
S d
Feature2
1 0 1 1 0 0 0 0 0 1 000m passe
S d
Totals
2 0 2 2 0 0 0 0 0 2 647ms

Features

Featurel

Scenario: Scenario feature 1

21

http://www.relishapp.com/cucumber/cucumber/docs/formatters/json-output-formatter
http://asciidoctor.org/docs/what-is-asciidoc/

Given

scenario step £ (647ms)

Feature2

Scenario: Scenario feature 2

Given

scenario step £ (000ms)

2.5. Tag rendering

2.5.1. Render feature tags in that feature’s scenarios

22

Given

The following two features: ¢

@someTag
Feature: Featurel

@otherTag
Scenario: Scenario feature 1

Given scenario step

@someTag @otherTag
Scenario: Scenario feature 2

Given scenario step

When

I render the feature %

Then
the tags displayed under each scenario should not have duplicates ¢

Features

Featurel

Scenario: Scenario feature 1

tags: @someTag,@otherTag

Given

scenario step €3 (001ms)

Scenario: Scenario feature 2

tags: @someTag,@otherTag

Given

scenario step ¥ (000ms)

23

2.5.2. Ignore cukedoctor tags in resulting documentation

Cukedoctor specific tags like @asciidoc and @order should not be rendered in resulting
documentation.

24

Given

The following two features: ¢

@someTag @asciidoc @order-99
Feature: Featurel

@otherTag @asciidoc
Scenario: Scenario feature 1

Given scenario step

@someTag @otherTag
Scenario: Scenario feature 2

Given scenario step

When
I render the feature %

Then

Cukedoctor tags should not be rendered in documentation ¢

Features

Featurel

Scenario: Scenario feature 1

tags: @someTag,@otherTag

Given

scenario step €3 (001ms)

Scenario: Scenario feature 2

tags: @someTag,@otherTag

Given

scenario step ¥ (000ms)

25

2.6. Attachments

In order to capture dynamically-generated content from my tests
As a bdd developer

I want to render attachments from my Cucumber tests in my living
documentation

2.6.1. Logging a string in Cucumber-JVM 6.7.0

26

Given

a Step has logged a string in Cucumber-JVM 6.7.0 ¢

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then

it will be rendered as ¢

Features

Attachments

Scenario: Cucumber JVM 6.7.0
scenario.log(String)

Given

a Step that performs scenario.log(String) &

She sells sea shells on the sea shore

2.6.2. Attaching plain text as a string with name in Cucumber-JVM 6.7.0

27

Given

a Step has attached plain text as a string with a title in Cucumber-JVM 6.7.0 ¢

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then

it will be rendered as ¢

Features

Attachments

Scenario: Cucumber JVM 6.7.0
scenario.attach(String, String, String)

Given

a Step that performs scenario.attach(String, String, String) ¢

String plain text

She sells sea shells on the sea shore

2.6.3. Attaching plain text as a byte array with name in Cucumber-JVM 6.7.0

28

Given
a Step has attached plain text as a byte array with a title in Cucumber-JVM 6.7.0 £

And
I am hiding step timings

And
all Cukedoctor extensions are disabled ¢

When
I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments

Scenario: Cucumber JVM 6.7.0
scenario.attach(ByteArray, String, String)

Given
a Step that performs scenario.attach(ByteArray, String, String) 3

Byte[] plain text

She sells sea shells on the sea shore

2.6.4. Attaching a string Cucumber]S 6.0.5

29

Given

a Step has attached a string in Cucumber]S 6.0.5 ¢

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments
Scenario: Cucumber JS 6.0.5 attach String

Given

a Step that performs attach String iy

Attachment 1

She sells sea shells on the sea shore

2.6.5. Attaching a plain text string Cucumber]S 6.0.5

30

Given

a Step has attached plain text as a string in Cucumber]JS 6.0.5 ¢

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments
Scenario: Cucumber JS 6.0.5 attach String, String

Given

a Step that performs attach String, String 3

Attachment 1

She sells sea shells on the sea shore

2.6.6. Attaching a plain text buffer Cucumber]S 6.0.5

31

Given

a Step has attached plain text as a buffer in Cucumber]JS 6.0.5 £

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments
Scenario: Cucumber JS 6.0.5 attach Buffer, String

Given

a Step that performs attach Buffer, String ¢

Attachment 1

She sells sea shells on the sea shore

2.6.7. Logged text should appear before attachments

32

Given

a Step has logged a string and attached a plain text string with a title)

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments
Scenario: Log and attach

Given

a Step that logs and attaches %
Peter Piper picked a peck of pickled peppers

String plain text

She sells sea shells on the sea shore

2.6.8. Multiple attachments

33

Given
a Step has three plain text attachments, two without a title &

And
I am hiding step timings

And
all Cukedoctor extensions are disabled ¢

When
I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments
Scenario: Multiple attachments

Given
a Step that has multiple attachments ¢

Attachment 1

First attachment

Second

Second Attachment

Attachment 2

Third attachment

2.6.9. Do not render attachments that are not plain text

34

Given

a Step has logged an image/png attachment

And
I am hiding step timings

And

all Cukedoctor extensions are disabled ¢

When

I convert the Feature ¢

Then
it will be rendered as ¢

Features

Attachments
Scenario: Attaching an image

Given

a Step that attaches an image ¢

35

	Cukedoctor Documentation
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Features
	2.1. Cukedoctor Converter
	2.1.1. Convert features test output into documentation

	2.2. Ordering
	2.2.1. Default ordering
	2.2.2. Custom ordering with tags

	2.3. Enrich features
	2.3.1. DocString enrichment activated by the content type
	2.3.2. DocString enrichment activated by a feature tag
	2.3.3. DocString enrichment activated by a scenario tag
	2.3.4. Whitespace in descriptions

	2.4. Documentation introduction chapter
	2.4.1. Introduction chapter in classpath

	2.5. Tag rendering
	2.5.1. Render feature tags in that feature’s scenarios
	2.5.2. Ignore cukedoctor tags in resulting documentation

	2.6. Attachments
	2.6.1. Logging a string in Cucumber-JVM 6.7.0
	2.6.2. Attaching plain text as a string with name in Cucumber-JVM 6.7.0
	2.6.3. Attaching plain text as a byte array with name in Cucumber-JVM 6.7.0
	2.6.4. Attaching a string CucumberJS 6.0.5
	2.6.5. Attaching a plain text string CucumberJS 6.0.5
	2.6.6. Attaching a plain text buffer CucumberJS 6.0.5
	2.6.7. Logged text should appear before attachments
	2.6.8. Multiple attachments
	2.6.9. Do not render attachments that are not plain text

