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"A software strategy that enables organizations to
deliver new features to users as fast and efficiently as
possible"

e Be readyto delivery in production at any moment!




WHY?

"...If it hurts, do it more frequently, and bring the pain
forward."

— Jez Humble




GOALS

¢ Reduce therisk of delivering
¢ Create a well known delivery process/cycle
e Make release process painless and without surprises

e Be ready to go to production at anytime

Change

Required.
Often feared.
Why=




DEPLOY TO PRODUCTION
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PRINCIPLES

Each commit/push creates a release canditate

“The longer you delay, the worse(exponentially) the
problem becomes” [Neal Ford - Director at
ThoughtWorks]

Heavily based on automation

Automated tests are primordial

Continuous and fast feedback (from end user as well from your release
process)
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PRINCIPLES

¢ Continuous improvement

e Colaboration, everyone is responsible for the release process ( DEV, QA,
OPs...)

e Measurable progress

1. How many builds have failed?

2. Inwhichstage it failed?

3. How long it takes to go to production?




CONSEQUENCES

e Less severity and frequency of failures related to a release

e Reducedtime to recovery from failures (MTTR)

Maybe this is too

Maybe you're much suclk?

changing too much at once?

A

e

Happening too often?




DEPLOYMENT PIPELINE

"...A pipeline is a set of stages to bring funcionality from
developers to end users"

PRODumaN FEEDBAC& «7 Q.D




JENKINS 1L.X PIPELINE
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JENKINS 2. X PIPELINE

Declarative Pipeline Syntax 1.0 is now available

Published on 2017-02-03 by Patrick Wolf

| am very excited to announce the addition of Declarative Pipeline syntax 1.0 to Jenkins Pipeline, We think this new svntax will enable
everyone involved in DevOps, regardless of expertise, to participate in the continuous delivery process.

Whether creating, editing or reviewing a pipeline, having a straightforward structure helps to understand and predict the flow of the pipeline and provides a common
foundation across all pipelines.

Pipeline as Code

Pipeline as Code was one of the pillars of the Jenkins 2.0 release and an essential part of implementing continuous delivery (CD). Defining all of the stages of an
application’s CD pipeline withina Jenkinsfile and checking it into the repository with the application code provides all of the benefits inherent in source control

management (SCM):

» Retain history of all changes ta Pipeline

» Rollback to a previous Pipeline version

v View diffs and merge changes to the Pipeline

» Test new Pipeline steps in branches

» Run the same Pipeline on a different Jenkins server
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JENKINS 2. X PIPELINE

e Describedinavery easy and powerful DSL
¢ Lives onsource code (versioning)

e Reusewith shared libraries

e Everythinginoneplace (Jenkinsfile)

e Recovery from restarts



JENKINS 2. X PIPELINE AS CODE

pipeline {
agent any

stages {
stage( 'checkout') {
steps {
git 'https://github.com/rmpestano/tdc-pipeline.git’

}
}

stage( 'build') {

steps {
sh 'mvn clean package'




JENKINS 2.X PIPELINE ON CODE
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Demo ve.1 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.1)




JENKINS 2. X PIPELINE ON CODE

pipeline {
agent any

stages {
stage('build") {
steps {
sh 'mvn clean

}
}

stage( 'Deploy ') {
steps {
sh 'docker stop tdc-pipeline || true && docker
sh 'docker build -t tdc-pipeline .'




SONAR

Demo ve.2 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.2)

An open source platform for continuous

inspection of code quality




SONAR

pipeline {
agent any

stages {
stage('build') {
steps {

sh 'mvn

}
}

stage('unit-tests'
steps {
sh 'mvn

}




QUALITY GATE

Demo v0.3 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.3)




QUALITY GATE

pipeline {
agent any

stages {
stage('build") {
steps {
sh 'mvn clean package

}
}

stage('unit-tests'
steps {

sh 'mvn

¥




POST ACTIONS

Demo ve.4 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.4)

pipeline {
agent any

post {
always {
sendNotification(currentBuild. result)

¥

success {
echo
}

failure {
echo




PIPELINE SHARED LIBRARIES

Enables reuse of pipeline sections (even entire stages) among projects

https://github.com/rmpestano/tdc-pipeline#shared-library



TDC PIPELINE FINAL
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VIDEO

Ripeline;asicodeawithedenkins, Docker and Sona




PERGUNTAS?
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