JAVAEE PIPELINE AS CODE USING JENKINS, DOCKER AND
SONAR

Rafael Pestano

A build tool

A Cl tool

& Automated tests
=

1}

| s e |
Automated quality =, - Q
LN 4 A

Automated deployment -~

RAFAEL PESTANO

Software Engineer at PROCERGS

® @realpestano ¥

e @rmpestano)

URS)uG
T 0r(g

See this presentation in HTML here.

CONTINUOUS DELIVERY

"A software strategy that enables organizations to
deliver new features to users as fast and efficiently as
possible"

CONTINUOUS DELIVERY

"A software strategy that enables organizations to
deliver new features to users as fast and efficiently as
possible"

e Be readyto delivery in production at any moment!

WHY?

"...If it hurts, do it more frequently, and bring the pain
forward."

— Jez Humble

GOALS

¢ Reduce therisk of delivering
¢ Create a well known delivery process/cycle
e Make release process painless and without surprises

e Be ready to go to production at anytime

Change

Required.
Often feared.
Why=

DEPLOY TO PRODUCTION

PRINCIPLES

PRINCIPLES

e EFach commit/push creates a release canditate

“The longer you delay, the worse(exponentially) the
problem becomes” [Neal Ford - Director at
ThoughtWorks]

PRINCIPLES

e EFach commit/push creates a release canditate

“The longer you delay, the worse(exponentially) the
problem becomes” [Neal Ford - Director at
ThoughtWorks]

¢ Heavily based on automation

PRINCIPLES

e EFach commit/push creates a release canditate

“The longer you delay, the worse(exponentially) the
problem becomes” [Neal Ford - Director at
ThoughtWorks]

¢ Heavily based on automation

e Automated tests are primordial

PRINCIPLES

Each commit/push creates a release canditate

“The longer you delay, the worse(exponentially) the
problem becomes” [Neal Ford - Director at
ThoughtWorks]

Heavily based on automation

Automated tests are primordial

Continuous and fast feedback (from end user as well from your release
process)

PRINCIPLES

PRINCIPLES

¢ Continuous improvement

PRINCIPLES

¢ Continuous improvement

e Colaboration, everyone is responsible for the release process (DEV, QA,
OPs...)

PRINCIPLES

¢ Continuous improvement

e Colaboration, everyone is responsible for the release process (DEV, QA,
OPs...)

e Measurable progress

1. How many builds have failed?

2. Inwhichstage it failed?

3. How long it takes to go to production?

CONSEQUENCES

e Less severity and frequency of failures related to a release

e Reducedtime to recovery from failures (MTTR)

Maybe this is too

Maybe you're much suclk?

changing too much at once?

A

e

Happening too often?

DEPLOYMENT PIPELINE

"...A pipeline is a set of stages to bring funcionality from
developers to end users"

PRODumaN FEEDBAC& «7 Q.D

JENKINS 1L.X PIPELINE

r JEllk_ills el search i7) Trevor Quinn | log out

Jenkins b Build Pipeling » DISABLE ALITO REFRESH

Build Pipeline
L = &= O ¥

P

Production

Pipeline #87 Commit =

#1002 Acceptance

= Dec 18, 2014 2:13:23 PM
o023 san
tester

| #45 UAT |
Plpeline #B5 Commit UAT
M Dec 3, 2014 P:42:31 AM
* ¢ 50 5eC
. = |._ -
| UAT |

Pipeline #B6 Commit e #28 Production

#86

Praductlan

L J
-
L

Acceptance Praductlan

B Dec 3, 2014 9:39:31 AM
E0.8 gs&c

devalopar
E

JENKINS 2. X PIPELINE

Declarative Pipeline Syntax 1.0 is now available

Published on 2017-02-03 by Patrick Wolf

| am very excited to announce the addition of Declarative Pipeline syntax 1.0 to Jenkins Pipeline, We think this new svntax will enable
everyone involved in DevOps, regardless of expertise, to participate in the continuous delivery process.

Whether creating, editing or reviewing a pipeline, having a straightforward structure helps to understand and predict the flow of the pipeline and provides a common
foundation across all pipelines.

Pipeline as Code

Pipeline as Code was one of the pillars of the Jenkins 2.0 release and an essential part of implementing continuous delivery (CD). Defining all of the stages of an
application’s CD pipeline withina Jenkinsfile and checking it into the repository with the application code provides all of the benefits inherent in source control

management (SCM):

» Retain history of all changes ta Pipeline

» Rollback to a previous Pipeline version

v View diffs and merge changes to the Pipeline

» Test new Pipeline steps in branches

» Run the same Pipeline on a different Jenkins server

JENKINS 2. X PIPELINE

JENKINS 2. X PIPELINE

e Describedinavery easy and powerful DSL

JENKINS 2. X PIPELINE

e Describedinavery easy and powerful DSL

¢ Lives onsource code (versioning)

JENKINS 2. X PIPELINE

e Describedinavery easy and powerful DSL
¢ Lives onsource code (versioning)

e Reusewithshared libraries

JENKINS 2. X PIPELINE

e Describedinavery easy and powerful DSL
¢ Lives onsource code (versioning)
e Reusewithshared libraries

e Everythinginoneplace (Jenkinsfile)

JENKINS 2. X PIPELINE

e Describedinavery easy and powerful DSL
¢ Lives onsource code (versioning)

e Reusewith shared libraries

e Everythinginoneplace (Jenkinsfile)

e Recovery from restarts

JENKINS 2. X PIPELINE AS CODE

pipeline {
agent any

stages {
stage('checkout') {
steps {
git 'https://github.com/rmpestano/tdc-pipeline.git’

}
}

stage('build') {

steps {
sh 'mvn clean package'

JENKINS 2.X PIPELINE ON CODE

Genera Buikd Trig Advanced Froject Opfians Fipelins
Pipeline
Dresfinition Pipeline script fram SCM
SCM Gil i
Heposiones L1
Aaposions URL hitpsrgehub comirmpestancsde-ppaeline L
Crachentisbs none- v | | e aae
Aibearcadl..
Add Repoattony
Branches o buikd En
Branch Specifier (bank tor'any] | tags/D. 1 i
#A&dd Brmanch
Repositony browser {Auio} - B

Addrional Bahavicurs Bsdd -

Script Path Jerikinsfile .
Lightwaight chackout & L1
Pipasbre Sumiax

=l |

Demo ve.1 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.1)

JENKINS 2. X PIPELINE ON CODE

pipeline {
agent any

stages {
stage('build") {
steps {
sh 'mvn clean

}
}

stage('Deploy ') {
steps {
sh 'docker stop tdc-pipeline || true && docker
sh 'docker build -t tdc-pipeline .'

SONAR

Demo ve.2 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.2)

An open source platform for continuous

inspection of code quality

SONAR

pipeline {
agent any

stages {
stage('build') {
steps {

sh 'mvn

}
}

stage('unit-tests'
steps {
sh 'mvn

}

QUALITY GATE

Demo v0.3 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.3)

QUALITY GATE

pipeline {
agent any

stages {
stage('build") {
steps {
sh 'mvn clean package

}
}

stage('unit-tests'
steps {

sh 'mvn

¥

POST ACTIONS

Demo ve.4 (https://github.com/rmpestano/tdc-pipeline/releases/tag/0.4)

pipeline {
agent any

post {
always {
sendNotification(currentBuild. result)

¥

success {
echo
}

failure {
echo

PIPELINE SHARED LIBRARIES

Enables reuse of pipeline sections (even entire stages) among projects

https://github.com/rmpestano/tdc-pipeline#shared-library

TDC PIPELINE FINAL

Jenking o+ lde-pldline ¢ Full Stage View
tdc-pipeline - Stage View
u:“’"“ :: pyg e Paraie It- ft. SonarQube Living Quality Deploy G ta Mioratigns, DEPVID Smoke Pert m::m
lests besls begls be=3ls analysis dogs Gabe o G, praductan? gral praducticn bessls i1
SCM Aclans
1e sLae Himes 1z fs L] 2ms 2mneés imin3is e b £ 12z d3ms s 52 122 Ak b
: 1 1 || - m T TERT T W T T W T TImT [T T W EETE1 W T 2 om B [| T el W T L sn o T TEET 1 T T TE | T TEIT 1 W T TN | T Tl T T ™
e 13 10 15n Hms | 2min 225 Tmin 435 It 18 5z 145 S
23T
[amostpomplete . L L T L L [5 % N % W W
e 15 75 s tims 1min 458 1min 988 203 25 % 125 = at 135 o 155 445 15
Hd3s e
o 2 - .) -] . i i - .
1z 75 75 19ms | 2min €2 | 1min 265 it 15 S 135 B5TIE i Ts 75 15 5
s g b e
falco
Ot 2 . . 1 : . . _— . . .
13] f5 2mz | Amindiz min 142 1Hg is bz, 95 Rfme 5 B iz 425 fis
man B
L #J
— 15 1= 11 Mms | 2min 205 1min 435 2lis | 5 13s 46mE 53 &8 153 435 47%ms
2144 o e Tuie S0ai
[7]
m 13 B 108 2ms 2min Bs Imin3s 27 29 5 138 & 125 Fa 158 45 18
23106 =y e
f

VIDEO

Ripeline;asicodeawithedenkins, Docker and Sona

PERGUNTAS?

15

REFERENCES

https://github.com/rmpestano/tdc-pipeline/

https://jenkins.io/doc/book/pipeline/syntax/

https://jenkins.io/blog/2017/02/15/declarative-notifications/

https://jenkins.io/doc/book/pipeline/shared-libraries/

https://jenkins.io/blog/2017/02/07/declarative-maven-project/
https://virtualjug.com/pipeline-as-code-building-continuous-delivery-

pipelines-with-jenkins-2/

Slides: https://rmpestano.github.io/talks/slides/javaee-pipeline/index-
en.html

